a2 United States Patent

US009311348B2

(10) Patent No.: US 9,311,348 B2

Smith et al. (45) Date of Patent: *Apr. 12,2016
(54) METHOD AND SYSTEM FOR USPC e 707/803
IMPLEMENTING AN ARRAY USING See application file for complete search history.
DIFFERENT DATA STRUCTURES
(56) References Cited
(71) Applicant: Facebook, Inc., Menlo Park, CA (US)
U.S. PATENT DOCUMENTS
(72) Inventors: Edwin Thur Gideon Smith, Newton, 6.687.815 BL* 22004 D
. ,687, wyer etal. ... 713/1
MA (US) Keith Adams, San Carlos, CA 6.961.733 B2* 11/2005 Mazza i
H s ’ 961, gattl
(US); Jason Owen Evans, Palo Alto, CA 8,484,427 B1* 7/2013 Goldobin etal. 711/162
(as) 2002/0073068 Al* 6/2002 Guhacccooveivininnnnnn 707/1
2006/0156064 Al* 7/2006 Damani et al. 714/16
: . 2008/0307181 Al* 12/2008 Kuszmaul et al. .. .o 711164
(73) Assignee: Facebook, Inc., Menlo Park, CA (US) 3010/0217953 Al* 82010 Beaman et al. .. 216
. 2011/0225391 Al* 9/2011 Burroughs etal. . . 71216
(*) Notice: Subject. to any dlsclalmer,. the term of this 2011/0276744 Al* 1172011 Senguptaetal. 711/103
patent is extended or adjusted under 35 2013/0268770 Al* 10/2013 Huntetal. 713/189
US.C. 154(b) by O days. OTHER PUBLICATIONS
This patent is subject to a terminal dis-]]]
claimer. Non-Final Office Action Mailed Dec. 26, 2014, U.S. Appl. No.
13/691,622 of Smith, Edwin T.G., et al., filed Nov. 30, 2012.
. Notice of Allowance Mailed Apr. 17, 2015, in U.S. Appl. No.
(21) Appl. No.: 14/713,561 13/691,622 of Smith, Edwin T.G., et al., filed Nov. 30, 2012.
(22) Filed: May 15, 2015 * cited by examiner
(65) Prior Publication Data Primary Examiner — Rehana Perveen
US 2015/0248445 Al Sep. 3, 2015 Assistant Examiner — Tiffany Thuy Bui
(74) Attorney, Agent, or Firm — Perkins Coie LLP
Related U.S. Application Data 57) ABSTRACT
(63) Continuation of application No. 13/691,622, filed on sclosed hodand forimo] .
Nov. 30, 2012, now Pat. No. 9,069,807. Disclosed are a method an .system or 1mp gmentlng anarray
data type of a programming language using various data
(51) Int.Cl structures. The disclosed method includes a plurality of
P implementations in which the array data type may be imple-
GO6F 17/30 (2006.01) : . - X
GO6F 9/34 (2006.01) mented. The implementations provide an efficient way to
' retrieve elements from the array, especially in the order they
(52) US.Cl are inserted into the array. The data structures also minimize
CPC e GO6F 17/30312 (2013.01); GOGF 9/34 the computing resources required to manage and access the
(2013.01); GO6F 17/3033 (2013.01); GO6F array. The disclosed technique also selects one of the many
17/30126 (2013.01) implementations based on criteria such as access pattern or
(58) Field of Classification Search size of the array.

CPC ... GOG6F 17/3033; GOGF 17/30126; GOGF
17/30312; GOGF 9/34

array /305
pointer 1
pointer 2
340\

345
/ 350
inior 1 hashtable
pointer ~

pointer 2
355

19 Claims, 14 Drawing Sheets

/-310 /-300
/315 /320
pointer 1 .
rior 2 ordered container
pointer —
»/325
/330 /335
inter 1
zzintar 2 hashtable

US 9,311,348 B2

Sheet 1 of 14

Apr. 12,2016

U.S. Patent

uonnoaxg a|npo
8pon _ swi] uny

I ‘OId

apo) SINpoO

ajeIpauLIBy| uonejidwo)

N,

e=[o]ueg
2=[a]luegq
‘L=Lelueg

{

ocl k

mwr\o:\

oo_‘l\.

uonoung J0ssa%0.d
ssen e ¢ .
ocl

{ .ipHOM OJoH,, uImau }
() Buneaub 106 uonouny

} sse|n
Bpo)) 90IN0s

S0 r\

U.S. Patent Apr. 12,2016 Sheet 2 of 14 US 9,311,348 B2

260

n /255

7

3

1

Vo
FIG. 2C

o

Te]

N HI

(Nfo|m *
\—i'cﬁ' l—=0
ol |« ~—e (o)

230
235

FIG. 24

. q
Loy S
Py

R

2057y

$arr = array (
2
c
3

210

US 9,311,348 B2

Sheet 3 of 14

Apr. 12,2016

U.S. Patent

alqeysey

mmm\

| 1uepuod

JOUIE)UOD paloplo

Z Jeyuiod

omm\

mmm.\.

£ OId

Jaulejuog palepio

\ Z Jsjuiod

o|qelysey

\: | Jajuiod

— g Jeiod

L Jajuiod

omm\

m_‘m\

m%\
v/ovm
Z Jawod
L Jejuiod
soe Aele

U.S. Patent Apr. 12,2016 Sheet 4 of 14 US 9,311,348 B2

/400
/405
Processor /41 0
15 Memory
/
Array Usage Tracking
Module 425

Data Structure
Creation Module

420

Implementation
Selection Module /430

Array Management
Module

435

Storage System

FIG. 4

U.S. Patent Apr. 12,2016 Sheet 5 of 14 US 9,311,348 B2

500
/‘

CREATE AN ARRAY DATA
STRUCTURE USING FIRST

IMPLEMENTATION

505
Y /-

Create a first data structure having a
plurality of contiguous buckets of memory,
wherein the buckets are configured to
store key-value pairs of an array in the
order in which the key-value pairs are
inserted into the array

510
v /-

Create a second data structure having a
plurality of slots of memory, each of the
slots corresponding to a key of the
key-value pairs, and each of the slots
configured to store a pointer that points to
a bucket of the first data structure that
contains a value of the key to which the
slot corresponds

\ 4

(RETURN)

FIG. 5

U.S. Patent Apr. 12,2016 Sheet 6 of 14 US 9,311,348 B2

/600

RITING INTO AN ARRA
DATA STRUCTURE OF
FIRST IMPLEMENTATION

\ /605

Obtain, upon insertion of an element, a
bucket from first data structure that is
contiguous in memory to the previously
filled bucket

\ /610

Obtain a slot from the second data
structure that corresponds to a key of the
key-value pair

v /615

Store the key-value pair in the bucket

\ /620

Store a pointer that points to the bucket, in
the slot

Y

(RETURN)

FIG. 6

U.S. Patent Apr. 12,2016 Sheet 7 of 14 US 9,311,348 B2

RETRIEVING KEY-VALUE PAIRS
OF AN ARRAY IN THE ORDER THEY
ARE INSERTED INTO THE ARRAY, IN

THE FIRST IMPLEMENTATION

v /705

Obtain a pointer to the first bucket of first
data structure from the first
implementation

v /710

Read all the non-empty buckets of the first
data structure contiguously to obtain
key-value pairs in the order they are

inserted into the array

h 4

(RETURN)

FIG. 7

U.S. Patent Apr. 12,2016 Sheet 8 of 14 US 9,311,348 B2

[800

RETRIEVING KEY-VALUE PAIRS
OF AN ARRAY IN A RANDOM ORDER IN
THE FIRST IMPLEMENTATION

’ /805

Obtain, for a given key, a slot
corresponding to the key from the second
data structure

v /810

Obtain a pointer stored in the slot, the
pointer pointing to a bucket of the first
data structure that contains the value of
the given key

v /815

Read the key-value pair from the bucket
pointed to by the pointer

Y

(RETURN)

FIG. &8

U.S. Patent Apr. 12,2016 Sheet 9 of 14 US 9,311,348 B2

900
/-

CREATE AN ARRAY DATA
STRUCTURE USING A

SECOND IMPLEMENTATIO

905
v -

Create a first data structure having a
plurality of slots of the memory, the slots
configured to store key-value pairs of an

array, each of the slots corresponding to a
key of the key-value pairs

910
v -

Create a second data structure having a
plurality of contiguous buckets of memory,
the buckets configured to store pointers
that point to slots of the first data
structure, the buckets storing the pointers
in the order in which a key-value pair
pointed to by a pointer is inserted into the
array

\ 4

(RETURN)

FIG. 9

U.S. Patent Apr. 12,2016 Sheet 10 of 14 US 9,311,348 B2

N 1000
WRITING INTO AN ARRAY
DATA STRUCTURE OF
SECOND IMPLEMENTATION
’ _— 1005

Obtain, upon insertion of a key-value pair
into an array, a slot from the first data
structure, the slot corresponding to a key
of the key-value pair

v /1010

Obtain a bucket from the second data
structure, the bucket being contiguous in
the memory to previously filled bucket

v /1015

Store the key-value pair in the slot

v _— 1020

Store a pointer that points to the slot, in
the bucket

h 4

(RETURN)

FIG. 10

U.S. Patent Apr. 12,2016 Sheet 11 of 14

RETRIEVING KEY-VALUE PAIRS
FROM THE ARRAY IN THE ORDER THE
WERE INSERTED INTO THE ARRAY, IN

THE SECOND IMPLEMENTATION

’ /1105

Obtain a pointer to a first bucket (i=0) of
the first data structure

’ /1110

A
Retrieve the pointer

key-val

pointer pointing to a slot of the second
data structure having a corresponding

in the i™ bucket, the

ue pair

A

’ /1115

Read the slot pointed to by the pointer to
obtain the key-value pair

’ /1 120

— Repeat for i = 0 to specified number

(RETURN)

FIG. 11

US 9,311,348 B2

N 1100

U.S. Patent

1200

Apr. 12,2016 Sheet 12 of 14 US 9,311,348 B2

RETRIEVING KEY-VALUE PAIRS
FROM THE ARRAY IN A RANDOM
ORDER, IN THE SECOND
IMPLEMENTATION

_— 1205

Obtain a slot corresponding to a key for
which a value has to be obtained, from the
second data structure

v _— 1210

Retrieve the key-value pair stored in the
obtained slot

\ 4

(RETURN)

FIG. 12

U.S. Patent Apr. 12,2016 Sheet 13 of 14 US 9,311,348 B2

SELECTING AN N 1300
IMPLEMENTATION
OF AN ARRAY DATA
STRUCTURE

Receive a request to create an array data
structure

v e 1310
Obtain a predefined implementation
selection criteria to select one of a first
implementation and a second
implementation of the array data structure

1315

Determine
whether a first implementation or a second
implementation is suitable for
the array

first
implementation

second
implementation

/1 320 /1 325

Select first Select second
implementation implementation

v L~ 1330

Create the array data structure using the
selected implementation

\ 4

(RETURN)

FIG. 13

US 9,311,348 B2

Sheet 14 of 14

Apr. 12,2016

U.S. Patent

VI ‘DIAd
oevlL 274 4" 0Zvl
D - L
Jaydepy diomjoN (s)eo1r8q O/ AMWM__M“&%
Gyl
Aowsy (s)i0s8820.d
- —
oL¥lL qovlL

DOZ

US 9,311,348 B2

1
METHOD AND SYSTEM FOR
IMPLEMENTING AN ARRAY USING
DIFFERENT DATA STRUCTURES

CROSS-REFERENCE

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/691,622, entitled “METHOD AND SYS-
TEM FOR IMPLEMENTING AN ARRAY USING DIF-
FERENT DATA STRUCTURES,” filed on Nov. 30, 2012,
which is incorporated herein by reference in its entirety.

FIELD OF INVENTION

This invention generally relates to data structures in com-
puter programming languages. More specifically, the inven-
tion relates to implementing an array data type using different
data structures.

BACKGROUND

In certain programming languages, array data type is
implemented using a hashtable. The hashtable is a data struc-
ture having “n” number of “slots” of memory. The array
elements are stored as key-value pairs in the slots of the
hashtable. The index of the array is stored as a key and the
element at the index is stored as a value in the hashtable. For
example, in an array $arr=array([‘a’]=1), the array element,
“1” at an index “a” is stored as a key-value pair (“a,1”’) in the
hashtable. An element of the array is stored in one of the slots
of the hashtable. The particular slot in which the element is
stored is determined by hashing the index of the array to a
particular slot. The hashing function determines a slot num-
ber for a given index.

Prior array implementation techniques have limitations in
the way the array elements are stored. Certain implementa-
tion techniques do not inherently record or track the order in
which the array elements are inserted into the array. So,
applications that need to retrieve the elements in the order
they were inserted into the array have to include their own
logic in the application program to retrieve the elements in the
order they were inserted.

Certain prior techniques that support retrieving or tracking
the elements in the order they are inserted use pointers. Data
is stored into a slot of the hashtable along with, for example,
two pointers. One pointer points to the next inserted element
and another one points to the previously inserted element. The
pointers are updated as and when the elements are added or
deleted from the hashtable. Storing pointers with every array
element consumes significant memory. Also, reading the
chain of pointers to retrieve the elements in the order they are
inserted consumes significant processor time.

SUMMARY

The present teaching provides a variety of methods, sys-
tems and paradigms for implementing an array data type of a
programming language using various data structures. Certain
disclosed techniques include a plurality of implementations
in which the array data type may be implemented. The imple-
mentations provide an efficient way to retrieve elements of
the array, especially in the order they are inserted into the
array. The data structures also minimize the computing
resources required to manage and access the array. Other
disclosed techniques also select one of the many implemen-
tations based on criteria including access pattern or size of the
array.

20

40

45

55

2

In an embodiment, the array is a data type in a dynamic
programming language, such as Personal Home Page (PHP).
In other embodiments, the array could be part of other pro-
gramming languages. The array stores data as key-value
pairs, where a value is associated with a key of the key-value
pair. Also, the key acts as an index of the array. In other
embodiments, the array can store the data in other formats.

In a first implementation, the array is represented using a
combination of a first data structure and a second data struc-
ture. The first data structure includes a plurality of contiguous
memory buckets that store key-value pairs in the order in
which the key-value pairs are inserted into the array. The
second data structure includes a plurality of memory slots that
store pointers that point to the buckets of the first data struc-
ture. Each of the slots corresponds to a key of the key-value
pairs in the first data structure, and stores a pointer pointing to
the bucket which has the value of the key. The key-value pairs
may be retrieved in the order they are inserted by iterating
through the first data structure. In an embodiment, the first
data structure is an ordered container having contiguous
blocks of memory, and the second data structure is a hash-
table.

In a second implementation, the array is represented using
a combination of a first data structure and a second data
structure. The first data structure includes a plurality of slots
of'the memory that store key-value pairs of the array. Each of
the slots correspond to a key of the key-value pairs. The
second data structure includes a plurality of contiguous buck-
ets of the memory that store pointers pointing to the slots
containing key-value pairs. Each of the pointers is associated
with one of the key-value pairs. Further, the buckets store the
pointers in the order in which the corresponding key-value
pairs are inserted into the array. The key value pairs may be
retrieved in the order they were inserted by iterating through
the second data structure to obtain the pointers to the slots
containing the key-value pairs and then obtaining the key-
value pairs from the slots pointed to by the pointers. In an
embodiment, the first data structure is a hashtable and the
second data structure is an ordered container having contigu-
ous blocks of memory.

Some embodiments of the invention have other aspects,
elements, features, and steps in addition to or in place of what
is described above. These potential additions and replace-
ments are described throughout the rest of the specification.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a distributed environment in which an embodi-
ment of the invention may operate.

FIGS. 2A-2C collectively illustrate example implementa-
tions of an array.

FIG. 3 is a block diagram illustrating allocation of memory
for an array data structure.

FIG. 4 is a block diagram of a system for implementing an
array using one of a plurality of implementations, according
to an embodiment of the disclosed technique.

FIG. 5 illustrates a process of implementing an array data
structure for an array using a first implementation.

FIG. 61is aflow diagram of a process for writing akey-value
pair of the array into the array data structure implemented
using the first implementation.

FIG. 7 is a flow diagram of a process for retrieving key-
value pairs of the array in the order they are inserted, in the
first implementation.

FIG. 8 is a flow diagram of a process for retrieving key-
value pairs of the array in a random order in the first imple-
mentation.

US 9,311,348 B2

3

FIG. 9 illustrates a process of implementing an array data
structure for an array using a second implementation.

FIG. 10 is a flow diagram of a process for writing a key-
value pair of the array into the array data structure imple-
mented using the second implementation.

FIG. 11 is a flow diagram of a process for retrieving key-
value pairs of the array in the order they are inserted, in the
second implementation.

FIG. 12 is a flow diagram of a process for retrieving key-
value pairs of the array in a random order, in the second
implementation.

FIG. 13 is a flow diagram of a process for selecting one of
a plurality of implementations to implement an array data
structure for an array.

FIG. 14 is a block diagram of an apparatus that may per-
form various operations, and store various information gen-
erated and/or used by such operations.

DETAILED DESCRIPTION

References in this description to “an embodiment”, “one
embodiment”, or the like, mean that the particular feature,
function, or characteristic being described is included in at
least one embodiment of the present invention. Occurrences
of such phrases in this specification do not necessarily all
refer to the same embodiment, nor are they necessarily mutu-
ally exclusive.

Disclosed are a method and system for implementing an
array data structure of a programming language using a plu-
rality of implementations. The implementations provide an
efficient way to retrieve elements from the array, especially to
retrieve them in the order they were inserted into the array.
The data structures also minimize the computing resources
required to manage and access the array. The disclosed tech-
nique also selects one of the many implementations based on
criteria including access pattern or size of the array.

In an embodiment, the array is a data type in a dynamic
programming language, such as Personal Home Page (PHP).
In other embodiments, the array could be part of other pro-
gramming languages. The array stores data as key-value
pairs, where a value is associated with a key of the key-value
pair. Also, the key acts as an index of the array. In other
embodiments, the array can store the data in other formats.

In a first implementation, the array is represented using a
combination of a first data structure and a second data struc-
ture. The first data structure includes a plurality of contiguous
memory buckets that store key-value pairs in the order in
which the key-value pairs are inserted into the array. The
second data structure includes a plurality of memory slots that
store pointers that point to the buckets of the first data struc-
ture. Each of the slots corresponds to a key of the key-value
pairs in the first data structure, and stores a pointer pointing to
the bucket which has the value of the key. The key-value pairs
may be retrieved in the order they are inserted by iterating
through the first data structure. In an embodiment, the first
data structure is an ordered container having contiguous
blocks of memory, and the second data structure is a hash-
table.

Ina second implementation, the array is represented, again,
using a combination of a first data structure and a second data
structure. The first data structure includes a plurality of slots
of'the memory that store key-value pairs of the array. Each of
the slots correspond to a key of the key-value pairs. The
second data structure includes a plurality of contiguous buck-
ets of the memory that store pointers pointing to the slots
containing key-value pairs. Each of the pointers is associated
with one of the key-value pairs. Further, the buckets store the

20

25

40

45

4

pointers in the order in which the corresponding key-value
pairs are inserted into the array. The key value pairs may be
retrieved in the order they were inserted by iterating through
the second data structure to obtain the pointers to the slots
containing the key-value pairs and then obtaining the key-
value pairs from the slots pointed to by the pointers. In an
embodiment, the first data structure is a hashtable and the
second data structure is an ordered container having contigu-
ous blocks of memory.

FIG. 1 is a distributed environment 100 in which an
embodiment of the invention may operate. The environment
100 includes a processor 115, a memory 120, a compilation
module 110 and a runtime module 130. The compilation
module 110 compiles source code 105 of a program to an
intermediate code 125, and the runtime module 130 executes
the intermediate code 125. The intermediate code 125 can be
machine code or byte code, for example.

The source code 105 can be written using a programming
language, such as PHP. In other embodiments, the source
code 105 can be written using other programming languages.
The source code 105 includes programming language con-
structs such as class, function, and data types such as array,
etc. When the source code 105 is executed, the data types (and
programming language constructs) are implemented, in the
memory 120, using various data structures. The data structure
used to implement a data type has a significant impact on the
efficiency of the execution of the program. Further, a usage
pattern and a property of the data type have to be considered
for implementing the data type using a particular data struc-
ture. The array “arr” in the source code 105 may be accessed
in various ways. For example, the array may be a read-only
array, the values may be retrieved randomly, the values (or
key-value pairs) may be retrieved in the order they were
inserted, key-value pairs may be written into the array, the
array may grow in size during the lifetime of the program, etc.
Accordingly, the data structure used to implement the array is
selected based at least on some of the above mentioned fac-
tors.

FIGS. 2A-2C illustrate example implementations of an
array, according to an embodiment of the disclosed tech-
nique. The example implementations includes a first imple-
mentation 225 of FIG. 2B and a second implementation 250
of FIG. 2C. An array, such as array 205 of FIG. 2A, can be
implemented using one or both of the example implementa-
tions. The example implementations may be implemented in
an environment such as environment 100 of FIG. 1. The array
205 can be part of a source code, such as source code 105.

The array data structure implemented using first imple-
mentation 225, includes a data structure 230 that contains a
plurality (n+1) of slots of memory, and another data structure
235 that contains a plurality (m+1) of contiguous buckets of
memory. The data structure 230 can be, for example, a hash-
table, and data structure 235 can be, for example, contiguous
blocks of memory. (Henceforth, the data structure with a
plurality of slots in the memory is referred to as “hashtable”
and the data structure with a plurality of contiguous buckets
of memory is referred to as “ordered container.”) In other
embodiments, the data structures 230 and 235 can be created
using other similar data structures.

The buckets of the ordered container 235 store key-value
pairs 210 of the array 205 in the order in which the key-value
pairs 210 are inserted into the array 205. In an embodiment,
the key or value or both may be pre-defined or dynamically
computed. The slots of the hashtable 230 store pointers that
point to the buckets containing the key-value pairs 210. Each
of'the slots in the hashtable 230 corresponds to one of the keys
of the key-value pairs 210. When a key-value pair is inserted

US 9,311,348 B2

5

into the array 205, (a) a slot corresponding to the key is
obtained from the hashtable 230, and (b) a bucket contiguous
to the previously filled bucket is obtained from the ordered
container 235. The key-value pair is stored in the retrieved
bucket, and a pointer that points to the retrieved bucket is
stored in the slot corresponding to the key.

For example, consider that a key-value pair of “a, 17 (“a”
being the key and “1” being the value) is inserted into the
array 205. Also, consider that the hashtable 230 and the
ordered container 235 are null, or empty, that is, they do not
contain any entries. When the key-value pair “a, 1 is inserted
into the array 205, a bucket contiguous to previously filled
bucket is obtained from the ordered container 235. Since
there are no key-value pairs in the ordered container 235,
“bucket 0” is retrieved. A slot corresponding to the key “a” is
obtained from the hashtable 230. In an embodiment, the slot
is obtained using a hash function, on the key “a”, which
evaluates the key to a number. Consider that the hash function
evaluates “a” to “2.” So, “slot 2” is obtained from the hash-
table 230. After obtaining the “bucket 0” and “slot 27, the
key-value pair “a,1” is stored in “bucket 0" and pointer to the
“bucket 0” is stored in “slot 2.

Similarly, when a subsequent key-value pair such as “b, 2”
is inserted into the array 205, a bucket contiguous to the
previously filled bucket, that is, “bucket 1 (which is adjacent
to the previously filled bucket “bucket 0”) is obtained from
the ordered container 235, and a slot, “slot 0” which corre-
sponds to the key “b” is obtained from the hash table 210. The
key-value pair “b, 2 is stored in “bucket 1”” and a pointer to
the “bucket 1” is stored in “slot 0" Accordingly, when sub-
sequent key-value pairs are inserted into the array 205, the
key-value pairs 210 are stored in the ordered container 235 in
the order they are inserted into the array 205. In an embodi-
ment, the slots of the hashtable 230 and the buckets of ordered
container 235 may be allotted as and when the key-value pairs
are added to the array.

Having a separate data structure, such as the ordered con-
tainer 235, to store the key-value pairs 210 in the order they
are inserted into the array enables the applications to retrieve
them in the order they are inserted more efficiently and with-
out having any additional logic. In an embodiment, retrieving
key-value pairs in the order they are inserted into an array
from a data structure that stores them in the order they are
inserted is more efficient than retrieving from the data struc-
tures that do not store them in the order they are inserted.

In the second implementation 250 of FIG. 2C, the key-
value pairs 210 are stored in slots of hashtable 255, and
pointers to the slots are stored in the ordered container 260.
One of the differences between the two example implemen-
tations is that, the second implementation 250 stores the
pointers in the order of the key-value pairs they point to are
inserted into the array, whereas the first implementation 225
stores the key-value pairs in the order they were inserted into
the array.

Consider that the hashtable 255 and ordered container 260
have no entries. When a key-value pair, such as “a, 17 is
inserted into the array 205, a slot corresponding to the key “a”
is obtained from the hashtable 255. Consider that a hash
function evaluates “a” to “3.” So, “slot 3" is obtained from the
hashtable 255. A bucket that is contiguous to the previously
filled bucket, that is, “bucket 0” (since there are no entries in
the ordered container 260) is obtained. The key-value pair “a,
17 is inserted into “slot 3” of the hashtable 255 and a pointer
to “slot 3” is stored in the “bucket 0” of the ordered container
260. Accordingly, when subsequent key-value pairs are added
to the array 205, the key-value pairs are hashed into corre-
sponding slots of the hashtable 255, and pointers pointing to

10

15

20

25

30

35

40

45

50

55

60

65

6

the key-value pairs are stored in the ordered container 260 in
the order in which the key-value pairs are inserted into the
array.

The first implementation 225 and the second implementa-
tion 250 provide different benefits in different scenarios. For
example, in a scenario where the key-value pairs 210 are often
retrieved in the order they are inserted, using the first imple-
mentation 225 may be beneficial since the values may be
obtained by iterating the ordered container 235. However, if
the values in the array 205 are accessed on a random basis, for
example, by performing a look-up using a key, at least two
reads may be performed to retrieve the value. That is, a first
read to obtain the slot corresponding to the key and a second
read to obtain the key-value pair from the bucket pointed to by
the pointer in the slot. Accordingly, first implementation may
consume more computing resources in scenarios where val-
ues are often retrieved on random basis than in the order they
were inserted into the array 205.

In the second implementation 250, a value of a key may
obtained in a single read, for example, by performing a look-
up inthe hashtable 255 using the key. Accordingly, the second
implementation 250 provides a benefit over the first imple-
mentation 225 in scenarios where the values are accessed
randomly often. However, in scenarios where the values are
often retrieved in the order they are inserted, the second
implementation 250 performs at least two reads—a first read
to obtain the pointer from the ordered store 260 and a second
read to obtain the key-value pair from the slot pointed to by
the pointer. Accordingly, the second implementation 250 may
not be as efficient compared to the first implementation 225 in
scenarios where the values are retrieved in the order they were
inserted.

FIG. 3 is a block diagram illustrating allocation of memory
for an array data structure, according to an embodiment of the
disclosed technique. Memory environment 300 illustrates
allocating memory for an array data structure implementing
an array, such as array 205 of FIG. 2. In an embodiment, the
memory may be similar to the memory 120 of environment
100 of FIG. 1. In the first implementation 225, the array data
structure for the array 205 “arr” is implemented using a com-
bination of the hashtable 230 and the ordered container 235.
The array data structure is allocated a block of memory.

In a first configuration 305, the block allotted for the array
data structure can contain both the hashtable 230 and the
ordered container 235 in the same block. The array data
structure has a first pointer “pointer 1 that points to the
hashtable 230 in the block, and a second pointer “pointer 2”
that points to the ordered container 235 in the block. In an
embodiment, the pointers stored in the slots of hashtable 230
can be an offset to a bucket the pointer points to. The offset
can be represented using lesser number of bits than a pointer
and thus, reduces the memory space consumed.

Inasecond configuration 310, the block 315 allotted for the
array data structure includes the hashtable 230 in the same
block, but the ordered container 235 is allocated a different
block 320. The first pointer “pointer 1 points to the hashtable
230 in the block 315, and a second pointer “pointer 2 points
to the ordered container 235 in the block 320. In an embodi-
ment, the pointer stored in the slot of hashtable 230 can be an
offset of a bucket the pointer points to. The offset can be
represented using lesser number of bits than a pointer, which
reduces the consumption of memory space.

In a third configuration 325, the block 330 allotted for the
array data structure includes the ordered container 235 in the
same block, but the hashtable 230 is allocated a different
block 335. The first pointer “pointer 1 points to the hashtable

US 9,311,348 B2

7

230 in the block 335, and a second pointer “pointer 2 points
to the ordered container 235 in the block 330.

In a fourth configuration 340, both the hashtable 230 and
the ordered container 235 are allocated different blocks and
outside of the block 345 allotted for the array data structure.
The first pointer “pointer 1’ points to the hashtable 230 in the
block 350, and a second pointer “pointer 2 points to the
ordered container 235 in the block 355.

In an embodiment, a particular configuration is chosen
based on various factors including, architecture of a computer
system the program is executing in, memory allocation tech-
niques of the operating system of the computer system, a size
of the array 205, whether size of the array 205 changes or
remains the same during the execution of the program, etc.

FIG. 41is ablock diagram of a system 400 for implementing
an array using one of a plurality of implementations, accord-
ing to an embodiment of the disclosed technique. The system
400 can be in an environment such as environment 100 of
FIG. 1. The specific implementation can be similar to a first
implementation 225 or a second implementation 250 of
FIGS. 2B and 2C, respectively. The system 400 includes a
processor 405, a memory 410, array usage tracking module
415, an implementation selection module 420, a data struc-
ture creation module 425, an array management module 430
and a storage system 435 that contains details regarding array
usage pattern. Each of the modules co-ordinate with the pro-
cessor 405 to create and manage the array data structure. Of
course, in some embodiments arrays could be implemented
during execution according to an indicated implementation,
depending on the desired application.

The implementation selection module 415 selects at least
one of the first implementation 225 and the second imple-
mentation 250 based on criteria including (i) array usage
pattern, or (ii) size of an array. The array tracking module 415
tracks the array usage pattern or size of the array during the
execution of a program containing the array. The array track-
ing module 415 generates a report containing information
regarding the usage of the array, and stores the report in the
storage system 435, such as a database. The array usage
pattern that is tracked can include at least one of (i) whether
the array elements are often read in random order, (ii) whether
the array elements are often read in the order they are inserted
into the array, (iii) a number of elements/number of times an
element is read from the array, (iv) whether the array is a read
only array, (v) whether a size of the array changes (increases/
decreases) during the lifetime of the array, etc.

In an embodiment, the implementation selection module
415 selects the first implementation 225 if a frequency of
reading the elements of the array in the order they are inserted
exceeds a predefined threshold. The implementation selec-
tion module 415 selects the second implementation 250 if at
least one of (i) a frequency of reading the elements of the array
in a random order exceeds a predefined threshold, (ii) the
number of elements or number of times an element is read
from the array exceeds a predefined threshold, or (iii) the size
of the array increases beyond a predefined threshold etc.

The memory allocation configuration for the array data
structure can include one of the four memory allocation con-
figurations of FIG. 3. In an embodiment, the size of the array
helps in determining a particular memory allocation configu-
ration for the array data structure. For example, if the size of
the array increases continuously, the second configuration
310 may be selected in case of the first implementation 225 or
the third configuration 325 may be selected for second imple-
mentation 250.

In an embodiment, the access pattern of the array and the
size of the array can be tracked using a script that is executed

10

15

20

25

30

35

40

45

50

55

60

65

8

along with the program containing the array. The script can
generate a report containing the details of the array access
pattern and the size of the array. Further, the access pattern
may be tracked for a predefined number of executions of the
program to determine the access pattern of the array more
accurately.

After one of the first implementation 225 and the second
implementation 250 is selected by the implementation selec-
tion module 420, the data structure creation module 425
creates the array data structure in the memory 410 based on
the selected implementation. The array management module
430 provides or co-ordinates the read/write access to the array
data structure in the memory 410.

The array data structure created using either of the first
implementation 225 or the second implementation 250 sup-
ports collision resolution. A collision may result when two or
more keys hash to a single slot in the hashtable. The collision
resolution techniques determine a free slot in which the key-
value pair may be stored. The collision resolution techniques
include chaining, and probing techniques such as linear prob-
ing, quadratic probing, cuckoo hashing, double hashing, etc.

FIG. 5 illustrates a process 500 of implementing an array
data structure for an array using a first implementation,
according to an embodiment of the disclosed technique. The
process 500 may be executed in an system such as system 400
of FIG. 4. The first implementation can be similar to the first
implementation 225 of FIG. 2. At step 505, the data structure
creation module 425 creates a first data structure having a
plurality of contiguous buckets of a memory (also referred to
as “ordered container”). The buckets in the ordered container
are configured to store the key-value pairs of the array in the
order the key-value pairs are inserted into the array. For
example, the first bucket contains the first key-value pair
inserted into the array, the second bucket contains the second
key-value pair inserted into the array and so forth.

At step 510, the data structure creation module 425 creates
a second data structure having a plurality of slots of memory
(also referred to as “hashtable”). Each of the slots corre-
sponds to one of the keys of the key-value pairs in the ordered
container, and stores a pointer to the bucket that contains a
value of the key to which the slot corresponds. In an embodi-
ment, a slot corresponding to a key may be determined using
a hash function on the key.

FIG. 6 is a flow diagram of a process 600 for writing a
key-value pair of an array into the array data structure imple-
mented using the first implementation, according to an
embodiment of the disclosed technique. The process 600 may
be executed in a system such as system 400 of FIG. 4, and
using the array data structure created using process 500 of
FIG. 5. Atstep 605, upon insertion of a key-value pair into the
array, the array management module 430 obtains a bucket
from the ordered container which is contiguous to the previ-
ously filled bucket. At step 610, the array management mod-
ule 430 obtains a slot from the hashtable which corresponds to
the key of the key-value pair inserted into the array. At step
615, the array management module 430 stores the key-value
pair in the bucket. At step 620, the array management module
430 stores a pointer that points to the bucket, in the slot.

FIG. 7 is a flow diagram of a process 700 for retrieving
key-value pairs of an array in the order they are inserted, in the
first implementation, according to an embodiment of the dis-
closed technique. The process 700 may be executed in a
system such as system 400 of FIG. 4, and using an array data
structure created using process 500 of FIG. 5. As described in
FIG. 3, the array data structure includes both the ordered
container and the hashtable. The array data structure includes
pointers to the hashtable and the ordered container.

US 9,311,348 B2

9

At step 705, the array management module 430 obtains a
pointer to the first bucket of the ordered container. At step 710,
the array management module 430 iterates over the non-
empty contiguous buckets of the ordered container to retrieve
the key-value pairs in the order they are inserted.

FIG. 8 is a flow diagram of a process 800 for retrieving
key-value pairs of an array in a random order, in the first
implementation, according to an embodiment of the dis-
closed technique. The process 800 may be executed in a
system such as system 400 of FIG. 4, and using an array data
structure created using process 500 of FIG. 5. At step 805, the
array management module 430 obtains a slot of the hashtable
corresponding to a specified key for which the value has to be
obtained. In an embodiment, the array management module
430 obtains the corresponding slot by using a hash function
on the key. At step 810, the array management module 430
obtains a pointer stored in the slot. The pointer points to a
bucket in the ordered container which has the value (or key-
value pair) of the key to which the slot corresponds. At step
815, the array management module 430 reads the key-value
pair from the bucket pointed to by the pointer.

FIG. 9 illustrates a process 900 of implementing an array
data structure for an array using a second implementation,
according to an embodiment of the disclosed technique. The
process 900 may be executed in an system such as system 400
of FIG. 4. The second implementation can be similar to the
second implementation 250 of FIG. 2. At step 905, the data
structure creation module 425, creates a hashtable having a
plurality of slots. Each of the slots of the hashtable is config-
ured to store one of a plurality of key-value pairs of an array.
Each of the slots corresponds to one of the keys of the key-
value pairs. In an embodiment, a slot corresponding to a key
may be determined using a hash function on the key.

At step 910, the data structure creation module 425 creates
an ordered container having a plurality of contiguous buckets
of'a memory. Each of the buckets in the ordered container is
configured to store a pointer that points to one of the slots of
the hashtable. Further, the buckets are configured to store the
pointers in the order in which a key-value pair pointed to by a
pointer is inserted into the array. For example, the first bucket
contains a pointer to the slot containing the first key-value pair
inserted into the array, the second bucket contains a pointer to
the slot containing the second key-value pair inserted into the
array and so forth.

FIG. 10 is a flow diagram of a process 1000 for writing a
key-value pair of an array into the array implemented using
the second implementation, according to an embodiment of
the disclosed technique. The process 1000 may be executed in
a system such as system 400 of FIG. 4, and using an array data
structure created using process 900 of FIG. 9. At step 1005,
upon insertion of a key-value pair into the array, the array
management module 430 obtains a slot from the hashtable of
the array data structure. The slot corresponds to a key of the
inserted key-value pair. At step 1010, the array management
module 430 obtains a bucket which is contiguous to a previ-
ously filled bucket from the ordered container. At step 1015,
the key-value pair is stored in the slot of the hashtable. At step
1020, a pointer to the slot is stored in the bucket of the ordered
container.

FIG. 11 is a flow diagram of a process 1100 for retrieving
key-value pairs of an array in the order they are inserted, using
the second implementation, according to an embodiment of
the disclosed technique. The process 1100 may be executed in
a system such as system 400 of FIG. 4, and using an array data
structure created using process 900 of FIG. 9. As described in
FIG. 3, the array data structure includes pointers to the hash-
table and the ordered container.

25

30

40

45

10

At step 1105, the array management module 430 obtains a
pointer to the first bucket (i=0) of the ordered container. At
step 1110, the array management module 430 retrieves a
pointer stored in the i” bucket. The pointer points to a slot of
the hashtable which contains i” key-value pair inserted into
the array. (For example, i=0 indicates the first key value pair
inserted into the array, i=1 indicates the second value inserted
into the array and so forth.) At step 1115, the array manage-
ment module 430 retrieves the key-value pair stored in the slot
pointed to by the pointer. At step 1120, the array management
module 430 determines whether specified number of key-
value pairs are retrieved. Responsive to a determination that
the specified number of key-value pairs are retrieved, the
process 1100 returns. On the other hand, responsive to a
determination that the specified number of key-value pairs are
not retrieved, the control is transferred to step 1110, and the
array management module 430 iterates over remaining buck-
ets of the ordered container until the specified number of
key-value pairs are retrieved. In an embodiment, all key-value
pairs of the array may be retrieved.

FIG. 12 is a flow diagram of a process 1200 for retrieving
key-value pairs of an array in a random order, using the
second implementation, according to an embodiment of the
disclosed technique. The process 1200 may be executed in a
system such as system 400 of FIG. 4, and using an array data
structure creating using process 900 of FIG. 9. At step 1205,
the array management module 430 obtains a slot of the hash-
table corresponding to a specified key for which the value has
to be obtained. In an embodiment, the array management
module 430 obtains the corresponding slot by using a hash
function on the key. At step 1210, the array management
module 430 retrieves the key-value pair stored in the slot of
the hashtable.

FIG. 13 is a flow diagram of a process 1300 for selecting
one of a plurality of implementations to implement a data
structure of an array, according to an embodiment of the
disclosed technique. The process 1300 may be executed in a
system such as system 400 of FIG. 4. At step 1305, the data
structure creation module 425 receives a request to create an
array data structure for an array of a program. At step 1310,
the array usage tracking module 415 retrieves predefined
implementation selection criteria for selecting an implemen-
tation from the storage system 435. The predefined imple-
mentation selection criteria include at least one of (a) array
usage pattern, or (b) the size of the array. At determination
step 1315, the implementation module 420 determines
whether a first implementation or a second implementation is
suitable for the array based on the implementation selection
criteria. At step 1320, responsive to a determination that the
first implementation is suitable, the first implementation is
selected. On the other hand, responsive to a determination
that the second implementation is suitable, at step 1325, the
second implementation is selected. At step 1330, the data
structure creation module 425 creates the array data structure
based on the selected implementation.

FIG. 14 is a block diagram of an apparatus that may per-
form various operations, and store various information gen-
erated and/or used by such operations, according to an
embodiment of the disclosed technique. The apparatus can
represent any computer or processing system described
herein. The processing system 1400 is a hardware device on
which any of the entities, components or services depicted in
the examples of FIGS. 1-13 (and any other components
described in this specification) can be implemented, such as a
compilation module, runtime module, memory, BLOB,
implementation selection module, array usage tracking mod-
ule, data structure creation module, storage system, etc. The

US 9,311,348 B2

11

processing system 1400 includes one or more processors
1405 and memory 1410 coupled to an interconnect 1415. The
interconnect 1415 is shown in FIG. 14 as an abstraction that
represents any one or more separate physical buses, point to
point connections, or both connected by appropriate bridges,
adapters, or controllers. The interconnect 1415, therefore,
may include, for example, a system bus, a Peripheral Com-
ponent Interconnect (PCI) bus or PCI-Express bus, a Hyper-
Transport or industry standard architecture (ISA) bus, a small
computer system interface (SCSI) bus, a universal serial bus
(USB), IIC (12C) bus, or an Institute of Electrical and Elec-
tronics Engineers (IEEE) standard 1394 bus, also called
“Firewire”.

The processor(s) 1405 is/are the central processing unit
(CPU) of the processing system 1400 and, thus, control the
overall operation of the processing system 1400. In certain
embodiments, the processor(s) 1405 accomplish this by
executing software or firmware stored in memory 1410. The
processor(s) 1405 may be, or may include, one or more pro-
grammable general-purpose or special-purpose microproces-
sors, digital signal processors (DSPs), programmable con-
trollers, application specific integrated circuits (ASICs),
programmable logic devices (PLDs), trusted platform mod-
ules (TPMs), or the like, or a combination of such devices.

The memory 1410 is or includes the main memory of the
processing system 1400. The memory 1410 represents any
form of random access memory (RAM), read-only memory
(ROM), flash memory, or the like, or a combination of such
devices. In use, the memory 1410 may contain a code. In one
embodiment, the code includes a general programming mod-
ule configured to recognize the general-purpose program
received via the computer bus interface, and prepare the gen-
eral-purpose program for execution at the processor. In
another embodiment, the general programming module may
be implemented using hardware circuitry such as ASICs,
PLDs, or field-programmable gate arrays (FPGAs).

Also connected to the processor(s) 1405 through the inter-
connect 1415 are a network adapter 1430, a storage device(s)
1420 and I/O device(s) 1425. The network adapter 1430
provides the processing system 1400 with the ability to com-
municate with remote devices, over a network and may be, for
example, an Ethernet adapter or Fibre Channel adapter. The
network adapter 1430 may also provide the processing sys-
tem 1400 with the ability to communicate with other comput-
ers within the cluster. In some embodiments, the processing
system 1400 may use more than one network adapter to deal
with the communications within and outside of the cluster
separately.

The 1/O device(s) 1425 can include, for example, a key-
board, a mouse or other pointing device, disk drives, printers,
a scanner, and other input and/or output devices, including a
display device. The display device can include, for example,
a cathode ray tube (CRT), liquid crystal display (LLCD), or
some other applicable known or convenient display device.

The code stored in memory 1410 can be implemented as
software and/or firmware to program the processor(s) 1405 to
carry out actions described above. In certain embodiments,
such software or firmware may be initially provided to the
processing system 1400 by downloading it from a remote
system through the processing system 1400 (e.g., via network
adapter 1430).

The techniques introduced herein can be implemented by,
for example, programmable circuitry (e.g., one or more
microprocessors) programmed with software and/or firm-
ware, or entirely in special-purpose hardwired (non-program-
mable) circuitry, or in a combination of such forms. Special-

10

15

20

25

30

35

40

45

50

55

60

65

12

purpose hardwired circuitry may be in the form of, for
example, one or more ASICs, PLDs, FPGAs, etc.

Software or firmware for use in implementing the tech-
niques introduced here may be stored on a machine-readable
storage medium and may be executed by one or more general-
purpose or special-purpose programmable microprocessors.
A “machine-readable storage medium”, as the term is used
herein, includes any mechanism that can store information in
a form accessible by a machine.

A machine can also be a server computer, a client com-
puter, a personal computer (PC), a tablet PC, a laptop com-
puter, a set-top box (STB), a personal digital assistant (PDA),
a cellular telephone, an iPhone, a Blackberry, a processor, a
telephone, a web appliance, a network router, switch or
bridge, or any machine capable of executing a set of instruc-
tions (sequential or otherwise) that specify actions to be taken
by that machine.

A machine-accessible storage medium or a storage
device(s) 1420 includes, for example, recordable/non-record-
able media (e.g., ROM; RAM; magnetic disk storage media;
optical storage media; flash memory devices; etc.), etc., or
any combination thereof. The storage medium typically may
be non-transitory or include a non-transitory device. In this
context, a non-transitory storage medium may include a
device that is tangible, meaning that the device has a concrete
physical form, although the device may change its physical
state. Thus, for example, non-transitory refers to a device
remaining tangible despite this change in state.

The term “logic”, as used herein, can include, for example,
programmable circuitry programmed with specific software
and/or firmware, special-purpose hardwired circuitry, or a
combination thereof.

What is claimed is:

1. A method, comprising:

creating, in a memory of a computer system, a first data

structure having multiple contiguous buckets of the

memory, the buckets configured to store multiple key-
value pairs in the order in which the key-value pairs are
inserted into an array; and

creating, in the memory of the computer system, a second

data structure having multiple slots of the memory, a

specified slot of the slots corresponding to a specified

key of the key-value pairs, the specified slot configured
to store a specified pointer that points to a specified
bucket of the first data structure storing a value of the
specified key, the specified slot of the second data struc-
ture determined as a function of the specified key stored
in the first data structure, the first data structure and the
second data structure being different data structures,
wherein the first data structure and the second data struc-
ture together form a combined data structure that repre-
sents the array, and wherein the combined data structure

includes a first pointer to the first data structure and a

second pointer to the second data structure.

2. The method of claim 1 further comprising:

obtaining, upon insertion of a first key-value pair into the

array,

a first bucket from the first data structure, the first bucket
being contiguous in the memory to a previously filled
bucket, and

a first slot from the second data structure, the first slot
corresponding to a first key of the first key-value pair;

storing, in the first bucket, the first key-value pair; and

storing, in the first slot, a pointer that points to the first
bucket.

3. The method of claim 2, wherein the second data structure
is a hashtable.

US 9,311,348 B2

13

4. The method of claim 3, wherein obtaining, from the
second data structure, the first slot corresponding to the first
key includes obtaining the first slot by using a hash function
on the first key.

5. The method of claim 1, wherein the specified pointer that
points to the specified bucket of the first data structure is an
offset of the specified bucket in the first data structure.

6. The method of claim 1 further comprising:

reading the buckets of the first data structure contiguously

to obtain the key-value pairs in the order the key-value
pairs are inserted into the array.
7. The method of claim 1, wherein the first data structure
and the second data structure are created in a single contigu-
ous block of the memory.
8. The method of claim 1, wherein at least one of the first
data structure or the second data structure are created in
separate blocks of the memory.
9. A computer-readable storage device storing computer-
readable instructions, the instructions comprising:
instructions for creating, in a memory of a computer sys-
tem, a first data structure having multiple slots of the
memory, the slots configured to store key-value pairs of
an array, the slots including a specified slot storing a
specified key-value pair of the key-value pairs; and

instructions for creating, in the memory of the computer
system, a second data structure having multiple contigu-
ous buckets of the memory, the buckets configured to
store pointers pointing to the slots storing the key-value
pairs, a specified pointer of the pointers associated with
the specified key-value pair, and the buckets further con-
figured to store the pointers in the order in which the
key-value pairs with which the pointers are associated
are inserted into the array, the specified slot of the first
data structure determined as a function ofa specified key
of the specified key-value pair stored in the second data
structure, wherein the first data structure and the second
data structure together form a combined data structure
that represents the array, and wherein the combined data
structure includes a first pointer to the first data structure
and a second pointer to the second data structure.

10. The computer-readable storage device of claim 9 fur-
ther comprising:

instructions for obtaining, upon insertion of a first key-

value pair into the array:

a first slot from the first data structure corresponding to
a first key of the first key-value pair, and

a first bucket from the second data structure to store a
first pointer that points to the first slot, the first bucket
being contiguous in the memory to a previously filled
bucket;

instructions for storing, in the first slot, the first key-value

pair; and

instructions for storing, in the first bucket, the first pointer.

11. The computer-readable storage device of claim 10,
wherein the first data structure is a hashtable.

12. The computer-readable storage device of claim 11,
wherein the instructions for obtaining, from the first data
structure, the first slot corresponding to the first key includes
instructions for obtaining the first slot by using a hash func-
tion on the first key.

13. The computer-readable storage device of claim 9 fur-
ther comprising:

instructions for reading the buckets of the second data

structure contiguously to obtain an ordered set of point-
ers; and

10

15

20

25

30

35

40

45

50

55

60

65

14

instructions for reading a set of the slots pointed to by the
ordered set of pointers to obtain the key-value pairs in
the order in which the key-value pairs are inserted into
the array.

14. An apparatus, comprising:

a hardware processor;

a data structure creation module configured to receive a
request to create an array data structure for implement-
ing an array of a programming language, the array data
structure configured to store multiple key-value pairs;
and

an implementation selection module to select, based on a
pre-defined selection criteria, one of multiple imple-
mentations of the array data structure to generate a
selected implementation, the implementations includ-
ing a first implementation and a second implementation,
the first implementation storing the key-value pairs in
the order in which the key-value pairs are inserted into
the array, the second implementation storing multiple
pointers that point to the key-value pairs in the order in
which the key-value pairs are inserted into the array,
wherein the data structure creation module is configured
to create the array data structure based on the selected
implementation, wherein the array data structure created
based on the selected implementation includes a first
pointer to a first data structure and a second pointer to a
second data structure, the first data structure and the
second data structure together forming the array data
structure, wherein the first data structure stores the key-
value value pairs and the second data structure stores
pointers to the key-value pairs stored in the first data
structure, wherein the second data structure stores the
pointers in the order in which the key-value pairs are
inserted into the array or as a function of keys of the
key-value pairs pointed to by the pointers.

15. The apparatus of claim 14, wherein, in the first imple-
mentation, the data structure creation module is configured
to:

generate the first data structure having multiple contiguous
buckets of a memory of a computer system, the buckets
configured to store the key-value pairs in the order in
which the key-value pairs are inserted into the array, and

generate the second data structure having multiple slots of
the memory, the slots configured to store the pointers, a
specified slot of the slots corresponding to a specified
key of the key-value pairs, the specified slot configured
to store a specified pointer of the pointers that points to
aspecified bucket of the first data structure storing one of
the key-value pairs having the specified key, wherein the
first data structure and the second data structure are
different data structures.

16. The apparatus of claim 14, wherein, in the second
implementation, the data structure creation module is config-
ured to:

generate the first data structure having multiple slots of a
memory of a computer system, the slots configured to
store the key-value pairs, a specified slot of the slots
corresponding to a specified key of the key-value pairs,
and

generate the second data structure having multiple contigu-
ous buckets of the memory, the buckets configured to
store the pointers, the pointers pointing to the slots stor-
ing the key-value pairs, a specified pointer of the point-
ers associated with a specified key-value pair of the
key-value pairs, and the buckets further configured to
store the pointers in the order in which the key-value
pairs are inserted into the array.

US 9,311,348 B2

15

17. The apparatus of claim 14, wherein the implementation
selection module is configured to select the first implemen-
tation if atleast one of (i) a frequency of fetching values of the
key-value pairs in the order they are inserted exceeds a first
threshold, or (ii) if a size of the array is below a second
threshold.

18. The apparatus of claim 14, wherein the implementation
selection module is configured to select the second imple-
mentation if at least one of (i) a frequency of fetching values
of the key-value pairs in an order other than in which the
key-value pairs are inserted exceeds a first threshold, (ii) a
size of the array exceeds a second threshold, (iii) a number of
reads/writes performed on the array exceeds a third threshold,
or (iv) a number of values read from or written into the array
exceeds a fourth threshold.

19. The apparatus of claim 14, wherein the pre-defined
selection criteria includes at least one of (i) an access pattern
of the array, or (ii) a size of the array.

#* #* #* #* #*

15

16

